

Baja SAE Preliminary Design

Front End + Rear End

Project Description Front/Rear End

- SAE Baja is a collegiate competition in which teams design, build, and test off-roading vehicles
- Vehicles are presented in competition to a fictitious firm for possible manufacturing
- Designs must abide by Baja SAE competition rules in order to compete
- Must be able to perform well in Dynamic and Static events
 - Acceleration Test
 - Braking Test
 - Hillclimb
 - o Endurance
- Sponsors include W.L. Gore, NAU and SAE International

Project Background & Benchmarking Front End

- Double-Wishbone Suspension:
 - Equal or unequal length Aarms
 - Shock centered in A-arms
 - Used on NAU car 44 and several top-placing SAE baja teams
- J-Arm Suspension:
 - Upper arm curves around shock
 - Used on NAU car 52

Figure 1: NAU Car 44

Figure 2: NAU Car 52

Project Background & Benchmarking Rear End

Car 44: Trailing arms, the most common of rear end suspension in terms of baja and high-speed offroading vehicles

Car 52 & Michigan: double wishbone, allows for the most control in terms of toe and camber, but is

very heavy, expensive, and difficult to design.

Figure 2: NAU Car 44

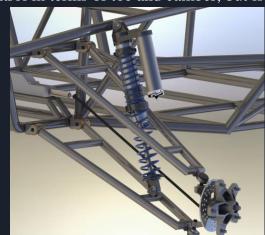


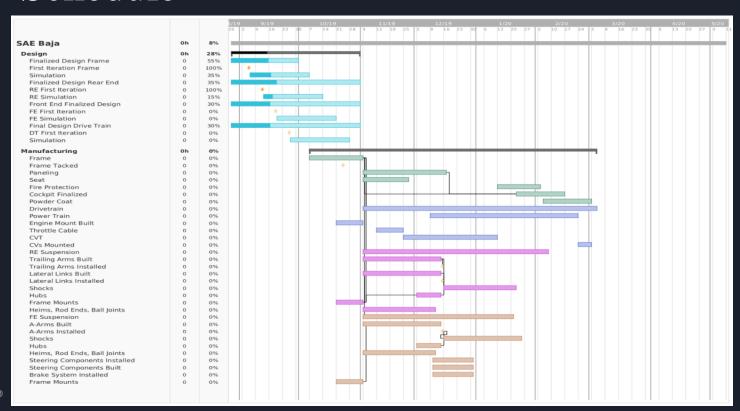
Figure 3: Double wishbone [1] [Aaron/SAE-Baja/9-17-2019] 4

Literature Review Front End

- Fundamental analysis of different braking systems (Will Preston) [2]
- Pros and cons of ackermann, parallel and reverse steering geometries specific to the Baja SAE project in low and high speeds. (Michael Edirmannasinghe) [3]
- Complete report of designing a rack and pinion steering system. Specific to the SAE Baja competition - 2017. (Michael Edirmannasinghe) [4]
- Design and computation of many suspension geometries. (Jake Grudynski and Jesse Summers) [5]

Literature Review Rear End

- Performance of a Semi-Trailing Arm with Two Lateral Links [6]. Lucas Cramer
- Rear Suspension Systems [7]. Lucas Cramer
- Lotus Shark Suspension Analysis Jacob Ruiz
- Baja SAE Rulebook [8] Aaron King



Customer & Engineering Requirements

Technical Requirements										
	Customer Weights	Cycles till Failure>	Material Properties>	Weight <	Wheel Base <		Fasteners <	Stopping Distance <	Ride Height*	Track Width <
Customer Needs	Cust	Sycl	Mate	Neig	Whe	Cost <	-aste	Stop	Ride	Lac
Reliable	5	9	9	1		3	3	9	3	3
Durable	5	9	9	1		3	3	3		
Lightweight	4		3	9	3	9	9	3		3
Manuverable	4			9	9	1		1	1	9
Low Cost	5	1	3	3	1	9	3			3
Easy to Repair	3	3		3	1	3	9			1
Short Stopping Distance	4							9		3
Short Wheel Base	4			9	9			3		
Ride Height	4			3					9	
Track Width	4			1				1		9
Safe to Operate	5		3	3	1			9		
Technical Requirement Units		#	kpsi	sql	inches	ь	#	feet	inches	inches
Technical Requirement Targets		150	50	450	60	7000	N/A	6	10	53
Absolute Technical Importance		104	132	169	97	124	108	169	55	93
Relative Technical Importance		5	2	1	6	3	4	1	8	7

Schedule

Budget

Total Available: \$6,000 provided by W.L. Gore

Last year front end: \$4,000

- Anticipated costs
 - o Parts & Materials \$3,000
 - Manufacturing (Insourced/ Outsourced) - \$0
 - Contingency \$500

Last year rear end: \$2,500

- Anticipated costs
 - o Parts & Materials \$1,500
 - Manufacturing (Insourced/ Outsourced) - \$0
 - Contingency \$500

Questions?

References

[1] Grabcad, https://grabcad.com/library/off-road-buggy-front-suspension-1, 16 September 2019

[2]R. Limpert, *Brake design and safety*, 3rd ed. Warrendale, Pa. (400 Commonwealth Dr., Wallendale PA USA): Society of Automotive Engineers, 2011.

[3] D. Colgrove, "Steering System for SAE Baja" (2019). Undergraduate Honors Theses. 64. https://scholarsarchive.byu.edu/studentpub_uht/64

[4] O. Suryavanshi, P. Prasad Sathe and M. Takey, "DESIGNING OF THE RACK AND PINION GEARBOX FOR ALL TERRAIN VEHICLE FOR THE COMPETITION BAJA SAE INDIA AND ENDURO STUDENT INDIA", *International Journal of Research in Engineering and Technology*, vol. 06, no. 09, pp. 79-84, 2017. Available: 10.15623/ijret.2017.0609014 [Accessed 13 September 2019].

[5] J. Dixon, Suspension Analysis and Computational Geometry. Chichester: John Wiley & Sons, 2009

References Cont...

[6] N. Brockman, "Baja SAE Rear Suspension Design," SAE International, Cincinnati, 2013.

[7] General Spring, "General Spring of Kansas City," 2019. [Online]. Available: https://www.generalspringkc.com/How_to_Upgrade_Your_Suspension_for_Off_Roading_s/3092.htm. [Accessed 13 September 2019].

[8] S. international, Baja SAE Rulebook, SAE, 2019.

